High-performance Tubes For Efficient Thermal Transfer
Stainless u-bend tubes provide superior corrosion resistance and thermal efficiency for heat exchangers and boilers.
High-performance Tubes For Efficient Thermal Transfer
Stainless u-bend tubes provide superior corrosion resistance and thermal efficiency for heat exchangers and boilers.
Stainless U-Bend Tubes are seamless or welded stainless steel tubes bent into a U-shape, designed to redirect fluid flow in heat exchanger tubes and ensure efficient thermal expansion absorber performance. Widely used in industries such as petrochemical, power generation, food processing, and pharmaceuticals, these tubes are critical for applications requiring corrosion resistance and high-temperature durability. Conforming to standards like ASTM A213, A269, A688, and ASME SA213, they are engineered for seamless integration into boilers, condensers, and superheaters.
Manufactured through cold-drawing or hot-rolling processes, Stainless U-Bend Tubes are typically made from grades like 304, 304L, 316, 316L, or 321 stainless steel, offering excellent resistance to pitting, crevice corrosion, and oxidation. The U-shape design allows for compact layouts, reducing the need for additional fittings and minimizing thermal stress in pipeline durability. Available in outer diameters from 9.53mm to 50.8mm and wall thicknesses from 0.8mm to 3.0mm, these tubes can be customized for leg lengths up to 12 meters and bend radii of 1.5D to 10D, meeting diverse project requirements.
The U-Shaped Tubing undergoes solution annealing post-bending to relieve residual stresses and enhance corrosion resistance, followed by rigorous testing, including hydrostatic, pneumatic, and dye penetrant tests, to ensure compliance with ASTM A688/A688M or TEMA standards. The tubes are mandrel-bent to maintain a uniform cross-section, preventing wrinkles or ovality, which ensures optimal flow and heat transfer efficiency. Surface treatments like pickling, passivation, or polishing further enhance durability, while capped ends prevent contamination during transport and installation.
Compared to straight tubes, Stainless U-Bend Tubes offer superior thermal compensation, allowing free expansion and contraction without the need for expansion joints, which reduces costs. Their high chromium (18-20%) and nickel (8-12%) content in grades like 304/316L ensures resistance to corrosive fluids, making them ideal for harsh environments like refineries or chemical plants. The tubes are also suitable for hygienic applications, such as food and beverage processing, due to their smooth, crevice-free surfaces that meet AS 1528.1 standards for cleanliness.
The Stainless U-Bend Tubes address challenges like pipeline wear, corrosion, and thermal stress in demanding systems. Their versatility, combined with easy maintenance and long service life, makes them a preferred choice for engineers seeking reliable heat exchanger tubes for critical applications in extreme conditions. Whether used in nuclear power plants or pharmaceutical processing, these tubes deliver unmatched performance and safety.
Heat exchanger equipment on the basis of stainless steel U-tube is essential in strategically important and critical fields nuclear and petrochemical machine building.
Surface condition Finished U Bend Tube shall be free of scale, without scratches after bending
Heat exchanger tubes can also be delivered as U-bent tube / U bend pipe, manufactured according to the common heat exchanger standards. Our basic specification for u bend pipes is ASTM A213/A213M, ASTM A 312/312M, EN 10216-5, and we can also follow various specifications on customers' requests.
Stainless U bends in the tube help to change the direction of the flow of the medium being transported, which helps to reduce the need for additional piping that would otherwise be required to accomplish the same effect. These tubes are often used in industries where cleanliness and hygiene are critical, such as food and beverage processing, pharmaceuticals, and chemical processes, because stainless steel is non-corrosive and resistant to high temperatures and pressure.
Engineered for durability and corrosion resistance in demanding industrial applications.
304L stainless steel tubing provides great durability by combining excellent physical properties with resistance to corrosive agents found in automotive exhaust emissions. This 304L tubing is made in the USA and is mandrel bent to provide smooth bends to ensure maximum flow. Burns' high standards ensure constant cross sections minimizing labor costs for fabricators.
U Bend Tubing made of 304L stainless steel is a type of tubing that is bent in the shape of a U. It is commonly used in various industries, including oil and gas plants, chemical and petrochemical plants, power generation plants, refineries, and boiler heat exchangers.
304L stainless steel is a specific grade of stainless steel known for its durability and resistance to corrosive agents. It combines excellent physical properties with a remarkable resistance to corrosion. The material is commonly used in applications where resistance to corrosion is essential, such as in harsh environments or when dealing with corrosive substances.
With strong wood structure box packing by containers loading and shipping.
| Standard | Material Grade | Application (U-Tube Bundles For) |
|---|---|---|
| ASTM A213 | TP304/304L, TP316/316L, TP310S | Boiler, Condensers, Super Heaters, Heat Exchangers, Coolers/Inter-coolers, Chiller |
| ASTM/ASME A/SA268 | TP405, TP409, TP410, TP430, TP439, TP444 | Ferritic and Martensitic Stainless Steel Seamless U-Tube bundles |
| ASTM/ASME A/SA213 | TP304/304L, TP304H, TP316/316L, TP347/347H, TP316Ti, TP321/321H, TP310S | Seamless Austenitic Stainless Steel U-Tube bundles |
| ASTM A249 | TP304/304L, TP304H, TP316/316L, TP347/347H, TP316Ti, TP321/321H, TP310S | Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser U-Tube bundles; Boiler, Condensers, Super Heaters, Heat Exchangers, Coolers/Inter-coolers, Chiller |
| ASTM A269 | TP304/304L, TP316/316L | Stainless Steel U-Bend Heat Exchanger Tube, Boiler Tubing bundles |
| - | Monel400, UNS N06600, UNS N06625, Incoloy800/800H, Incoloy825, Hastelloy | U-Tube bundles; U-Bend tubes |
| - | Duplex UNS S31803/32205, UNS S32750, Super Duplex | U-Bend tubes for Heat Exchanger, Boiler, Condensers, Super Heaters, Coolers/Inter-coolers, Chiller |
Engineered to meet diverse industrial needs with robust materials and versatile designs.
| Grade | C (% max) | Mn (% max) | Si (% max) | P (% max) | S (% max) | Cr (%) | Ni (%) | Mo (%) | N (% max) |
|---|---|---|---|---|---|---|---|---|---|
| 304 | 0.08 | 2.00 | 1.00 | 0.045 | 0.030 | 18.0-20.0 | 8.0-11.0 | - | 0.10 |
| 304L | 0.03 | 2.00 | 1.00 | 0.045 | 0.030 | 18.0-20.0 | 8.0-12.0 | - | 0.10 |
| 316 | 0.08 | 2.00 | 1.00 | 0.045 | 0.030 | 16.0-18.0 | 10.0-14.0 | 2.0-3.0 | 0.10 |
| 316L | 0.03 | 2.00 | 1.00 | 0.045 | 0.030 | 16.0-18.0 | 10.0-14.0 | 2.0-3.0 | 0.10 |
The low carbon content in 304L and 316L enhances weldability, while molybdenum in 316 and 316L improves resistance to pitting and crevice corrosion, making Stainless U bend tubes ideal for harsh environments.
| Grade | Tensile Strength (min, MPa) | Yield Strength (min, MPa) | Elongation (min, %) | Hardness (max, HB) | Hardness (max, HRB) |
|---|---|---|---|---|---|
| 304 | 515 | 205 | 40 | 201 | 92 |
| 304L | 485 | 170 | 40 | 201 | 92 |
| 316 | 515 | 205 | 40 | 217 | 95 |
| 316L | 485 | 170 | 40 | 217 | 95 |
These mechanical properties make Stainless U bend tubes suitable for applications requiring high strength and corrosion resistance, such as architectural structures, marine environments, and chemical processing.
In order to solve the cumbersome and difficult to remember stainless steel grades, improve the practicability of the brand representation, and the contrast with the international standard grades, China has formulated the "Universal Code System for Steel and Alloy Grades", such as 06Cr19Ni10, corresponding to 304. Different grades of stainless steel have different ingredients, but they all have a national standard. The standards of each country are also different.
| No | China (GB) | Japan (JIS) | American | Korea (KS) | EU (BS EN) | India (IS) | Australia (AS) | Taiwan (CNS) | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Old | New (07.10) | SUS | ASTM | UNS | STS | EN | IS | AS | CNS | |
| Austenitic Stainless Steel | ||||||||||
| 1 | 1Cr17Mn6Ni5N | 12Cr17Mn6Ni5N | SUS201 | 201 | S20100 | STS201 | 1.4372 | 10Cr17Mn6Ni4N20 | 201-2 | 201 |
| 2 | 1Cr18Mn8Ni5N | 12Cr18Mn9Ni5N | SUS202 | 202 | S20200 | STS202 | 1.4373 | — | — | 202 |
| 3 | 1Cr17Ni7 | 12Cr17Ni7 | SUS301 | 301 | S30100 | STS301 | 1.4319 | 10Cr17Ni7 | 301 | 301 |
| 4 | 0Cr18Ni9 | 06Cr19Ni10 | SUS304 | 304 | S30400 | STS304 | 1.4301 | 07Cr18Ni9 | 304 | 304 |
| 5 | 00Cr19Ni10 | 022Cr19Ni10 | SUS304L | 304L | S30403 | STS304L | 1.4306 | 02Cr18Ni11 | 304L | 304L |
| 6 | 0Cr19Ni9N | 06Cr19Ni10N | SUS304N1 | 304N | S30451 | STS304N1 | 1.4315 | — | 304N1 | 304N1 |
| 7 | 0Cr19Ni10NbN | 06Cr19Ni9NbN | SUS304N2 | XM21 | S30452 | STS304N2 | — | — | 304N2 | 304N2 |
| 8 | 00Cr18Ni10N | 022Cr19Ni10N | SUS304LN | 304LN | S30453 | STS304LN | — | — | 304LN | 304LN |
| 9 | 1Cr18Ni12 | 10Cr18Ni12 | SUS305 | 305 | S30500 | STS305 | 1.4303 | — | 305 | 305 |
| 10 | 0Cr23Ni13 | 06Cr23Ni13 | SUS309S | 309S | S30908 | STS309S | 1.4833 | — | 309S | 309S |
| 11 | 0Cr25Ni20 | 06Cr25Ni20 | SUS310S | 310S | S31008 | STS310S | 1.4845 | — | 310S | 310S |
| 12 | 0Cr17Ni12Mo2 | 06Cr17Ni12Mo2 | SUS316 | 316 | S31600 | STS316 | 1.4401 | 04Cr17Ni12Mo2 | 316 | 316 |
| 13 | 0Cr18Ni12Mo3Ti | 06Cr17Ni12Mo2Ti | SUS316Ti | 316Ti | S31635 | — | 1.4571 | 04Cr17Ni12MoTi20 | 316Ti | 316Ti |
| 14 | 00Cr17Ni14Mo2 | 022Cr17Ni12Mo2 | SUS316L | 316L | S31603 | STS316L | 1.4404 | 02Cr17Ni12Mo2 | 316L | 316L |
| 15 | 0Cr17Ni12Mo2N | 06Cr17Ni12Mo2N | SUS316N | 316N | S31651 | STS316N | — | — | 316N | 316N |
| 16 | 00Cr17Ni13Mo2N | 022Cr17Ni13Mo2N | SUS316LN | 316LN | S31653 | STS316LN | 1.4429 | — | 316LN | 316LN |
| 17 | 0Cr18Ni12Mo2Cu2 | 06Cr18Ni12Mo2Cu2 | SUS316J1 | — | — | STS316J1 | — | — | 316J1 | 316J1 |
| 18 | 00Cr18Ni14Mo2Cu2 | 022Cr18Ni14Mo2Cu2 | SUS316J1L | — | — | STS316J1L | — | — | — | 316J1L |
| 19 | 0Cr19Ni13Mo3 | 06Cr19Ni13Mo3 | SUS317 | 317 | S31700 | STS317 | — | — | 317 | 317 |
| 20 | 00Cr19Ni13Mo3 | 022Cr19Ni13Mo3 | SUS317L | 317L | S31703 | STS317L | 1.4438 | — | 317L | 317L |
| 21 | 0Cr18Ni10Ti | 06Cr18Ni11Ti | SUS321 | 321 | S32100 | STS321 | 1.4541 | 04Cr18Ni10Ti20 | 321 | 321 |
| 22 | 0Cr18Ni11Nb | 06Cr18Ni11Nb | SUS347 | 347 | S34700 | STS347 | 1.4550 | 04Cr18Ni10Nb40 | 347 | 347 |
| Austenitic-Ferritic Stainless Steel (Duplex) | ||||||||||
| 23 | 0Cr26Ni5Mo2 | — | SUS329J1 | 329 | S32900 | STS329J1 | 1.4477 | — | 329J1 | 329J1 |
| 24 | 00Cr18Ni5Mo3Si2 | 022Cr19Ni5Mo3Si2N | SUS329J3L | — | S31803 | STS329J3L | 1.4462 | — | 329J3L | 329J3L |
| Ferritic Stainless Steel | ||||||||||
| 25 | 0Cr13Al | 06Cr13Al | SUS405 | 405 | S40500 | STS405 | 1.4002 | 04Cr13 | 405 | 405 |
| 26 | — | 022Cr11Ti | SUH409 | 409 | S40900 | STS409 | 1.4512 | — | 409L | 409L |
| 27 | 00Cr12 | 022Cr12 | SUS410L | — | — | STS410L | — | — | 410L | 410L |
| 28 | 1Cr17 | 10Cr17 | SUS430 | 430 | S43000 | STS430 | 1.4016 | 05Cr17 | 430 | 430 |
| 29 | 1Cr17Mo | 10Cr17Mo | SUS434 | 434 | S43400 | STS434 | 1.4113 | — | 434 | 434 |
| 30 | — | 022Cr18NbTi | — | — | S43940 | — | 1.4509 | — | 439 | 439 |
| 31 | 00Cr18Mo2 | 019Cr19Mo2NbTi | SUS444 | 444 | S44400 | STS444 | 1.4521 | — | 444 | 444 |
| Martensitic Stainless Steel | ||||||||||
| 32 | 1Cr12 | 12Cr12 | SUS403 | 403 | S40300 | STS403 | — | — | 403 | 403 |
| 33 | 1Cr13 | 12Cr13 | SUS410 | 410 | S41000 | STS410 | 1.4006 | 12Cr13 | 410 | 410 |
| 34 | 2Cr13 | 20Cr13 | SUS420J1 | 420 | S42000 | STS420J1 | 1.4021 | 20Cr13 | 420 | 420J1 |
| 35 | 3Cr13 | 30Cr13 | SUS420J2 | — | — | STS420J2 | 1.4028 | 30Cr13 | 420J2 | 420J2 |
| 36 | 7Cr17 | 68Cr17 | SUS440A | 440A | S44002 | STS440A | — | — | 440A | 440A |
U-bend tubes are widely used in heat-exchanger systems. Heat-exchanger equipment on the basis of seamless stainless U-tubes is essential in strategically important and critical fields — nuclear and petrochemical machine building.
a...................The difference in length between two straight pipe
sections
c..............The tangent spacing of the outer wall of the elbow
Da............nominal steel pipe outer diameter
E..............The distance between the outer diameters of the two straight
ends
f...............the distance between the ends of the two straight ends
l............... straight tube length
Lg............. straight pipe section plus total length of pipe
Rm...........nominal bending radius
S.............nominal wall thickness
Smin.......The minimum wall thickness at the back of the elbow
t...............the bend deviates from the horizontal distance
So...........Standard minimum wall thickness
| Item | Condition (when) | Tolerance |
|---|---|---|
| Ovality | Nominal bend radius ≤ 2 x nominal OD | less than or equal to 12% |
| 2 x nominal OD < Nominal bend radius ≤ 4 x nominal OD | less than or equal to 10% | |
| Nominal bend radius > 4 x nominal OD | less than or equal to 5% | |
| Nominal bend radius ≤ 2 x nominal OD | 0.75 x nominal wall | |
| Minimum wall thickness | 2 x nominal OD < Nominal bend radius ≤ 4 x nominal OD | 0.8 x nominal wall |
| Nominal bend radius > 4 x nominal OD | 0.9 x nominal wall | |
| Nominal bend radius ≤ 8" (200mm) | +/-3/64"(1mm) | |
| Bending Radius | 8" (200mm) < Nominal bend radius ≤ 16" (400mm) | +/-1/16"(1mm) |
| Nominal bend radius >16" (400mm) | +/-5/64"(1mm) | |
| Distance between legs | - | Max 1/16"(1.5mm) |
| Wall thinning of bending area | - | Max 17% |
| Difference between leg lengths at the ends | Leg length ≤ 16' (4.88m) | +1/8"(3mm) |
| Leg length > 16' (4.88m) | +3/16"(5mm) | |
| Deviation from plane of bend | - | ≤ 3/16"(1.5mm) |
| Flattening on bend | - | ≤ 10% nominal diameter |
| Straight leg length | ≤5m | +1/8"(3mm) |
| >5m | +3/16"(5mm) | |
| Total tube length including radius | ≤6m | +3/16"(5mm) |
| >6m | +5/16"(8mm) |
U-Tube heat exchangers are known for their distinctive U-shaped tubes that offer several advantages and also come with certain limitations.
The U-tube heat exchanger features a single tubesheet with both ends of the tubes secured to it. This design allows the tubes to expand and contract freely, avoiding thermal stress and offering excellent thermal compensation. A double tube pass is utilized, providing a lengthy process path, high flow rates, and superior heat transfer performance with robust pressure resistance. The tube bundle is removable from the shell for convenient maintenance and cleaning, presenting a simple structure and low cost.
Limitations imposed by the elbow's curvature radius restrict the arrangement of heat exchange tubes. This results in a larger inner tube spacing within the tube bundle and a lower utilization rate of the tube sheet. The shell-side fluid is prone to short-circuiting, which can impede heat transfer. When a tube leaks or sustains damage, only the U-shaped tubes on the outer part of the bundle can be readily replaced. Damage to the inner heat exchange tubes is not as easily repairable and may require blocking off. Furthermore, the damage to a single U-shaped tube equates to the loss of two tubes, leading to a higher scrap rate.
U-bend tubes are used to transfer heat between fluids.
Transfers heat between fluids, allowing return flow at 180° in a compact space.
Used in heat exchangers, chemical & petrochemical, food processing, and refrigeration industries.
Applied in heat exchangers at Oil & Gas, petrochemical plants, refineries, and power plants.
Handles aggressive fluids like sodium hydroxide + sodium hypochlorite safely.
Allows pipeline expansion without buckling; flexible or sliding options available.
Enhances heat transfer when the outside coefficient is lower than the inside, improving efficiency.
U-bent heat exchanger tubes ensure efficient heat ...
Titanium alloy u-bent tubes offer unmatched corros...
U-shaped monel 400 tubes offer exceptional corrosi...
Astm a192 u-bend tubes are seamless carbon steel t...
Sa-213 tp347h u-bend tubes offer exceptional corro...
U-shaped heat exchanger tubes offer superior corro...