Seamless And Welded Solutions With Superior Corrosion Resistance
Stainless steel pipe is one of the more standardized materials resist corrosion due to a minimum 10.5% chromium content.
Stainless Steel Pipes are engineered for reliable fluid transport in demanding industrial environments, offering exceptional corrosion resistance and durability. Compliant with ASTM A312 for seamless and welded austenitic pipes and API 5L for oil and gas pipelines, these pipes are ideal for high-pressure applications up to 4500 psi and temperatures ranging from -196°C to 650°C. Grades like TP304/304L provide cost-effective corrosion resistance for general use, while TP316/316L excels in chloride-rich environments, such as marine or chemical processing, due to its superior pitting resistance. Seamless Stainless Pipes, produced via extrusion or rotary piercing, ensure structural integrity for critical systems, while Welded Stainless Pipes, formed from strip welding, offer cost-efficiency for larger diameters.
These Corrosion Resistant Pipes boast tensile strengths ≥515 MPa, yield strengths ≥205 MPa, and elongations up to 40%, supporting bending, flanging, and welding. Chromium (18-20%) forms a self-healing oxide layer, enhanced by nickel (8-14%) for ductility and molybdenum (in 316) for pitting resistance. Available in sizes from 1/8" to 36" (DN6 to DN900) and wall thicknesses from SCH 5S to XXH, they meet diverse needs, from oil and gas pipelines to food-grade systems. Surface finishes like mill, polished, or electropolished ensure compliance with sanitary standards for pharmaceuticals, while heat treatments enable cryogenic service. NACE MR0175 compliance supports sour service in oil and gas, resisting H2S and chlorides.
Seamless Stainless Pipes are preferred for high-pressure applications like boiler systems under ASME SA312, offering zero weld imperfections for enhanced safety. Welded Stainless Pipes suit low-to-medium pressure systems, such as water distribution or HVAC, with cost savings of up to 20% compared to seamless variants. Benefits include a lifespan of up to 50 years and 30-40% lower lifecycle costs versus carbon steel due to minimal maintenance. Custom options like cut-to-length or beveled ends facilitate integration into refineries, offshore platforms, or medical gas lines.
Compared to carbon steel, Stainless Steel Pipes provide 2-3 times better corrosion resistance, eliminating frequent painting in acidic or seawater environments. Unlike plastic pipes, they withstand extreme temperatures and pressures, ensuring reliability in industrial flows. Long-tail keywords like “seamless stainless steel pipe for oil and gas” or “welded stainless pipe for chemical processing” align with API 5L and NSF 61 standards. Rigorous testing—tensile, flattening, and hydrostatic—ensures compliance, with duplex grades like 2205 available for enhanced strength in aggressive conditions.
Addressing challenges like erosion in high-velocity flows and biofouling in water systems, these Industrial Stainless Pipes incorporate alloy enhancements like nitrogen for improved pitting resistance. Their 100% recyclability aligns with eco-friendly regulations, making them a sustainable choice. Whether transporting crude oil in refineries or potable water in municipal systems, Stainless Steel Pipes deliver unmatched strength, versatility, and performance for global industrial demands.
Engineered for robust fluid transport with superior corrosion resistance and strength.
Reduced surface area minimizes painting, fireproofing, and labor costs.
High weight-to-strength ratio ensures durability and reliability in use.
Used in construction, structural engineering, and various industrial projects.
We stock a wide range of schedules to ensure the right choice for every application, from low-pressure systems to the most demanding industrial conditions.
Lightweight and cost-effective, ideal for low-pressure applications such as water distribution, fire protection systems, and HVAC ductwork.
Stronger than Schedule 10, commonly used in residential plumbing, industrial cooling, and chemical applications.
Designed for high-pressure environments, offering improved durability for industrial processes and oil & gas applications.
Exceptional strength for extreme pressure and temperature conditions. Ideal for power plants, petrochemical industries, and steam lines.
The thickest and most robust pipe schedule, built for the most demanding industrial conditions like deep well drilling and high-pressure hydraulics.
We offer both welded and seamless stainless steel pipes in a range of configurations to meet your specific needs.
Welded pipes are manufactured by bending a sheet of steel into a tube and welding the seam.
Seamless pipes are created by heating a solid billet and piercing it with a mandrel to form a tube.
| Aspect | Seamless Pipes | Welded Pipes |
|---|---|---|
| Strength | Higher strength, no weld seam | Lower strength due to weld seam (but improving with technology) |
| Cost | Generally more expensive | More cost-effective to manufacture |
| Usage | High-pressure applications | Low to medium pressure applications |
| Availability | Smaller sizes, limited larger sizes | Wide range of sizes and lengths available |
| Grade | C (% max) | Mn (% max) | Si (% max) | P (% max) | S (% max) | Cr (%) | Ni (%) | Mo (%) | N (% max) |
|---|---|---|---|---|---|---|---|---|---|
| 304 | 0.08 | 2.00 | 1.00 | 0.045 | 0.030 | 18.0-20.0 | 8.0-11.0 | - | 0.10 |
| 304L | 0.03 | 2.00 | 1.00 | 0.045 | 0.030 | 18.0-20.0 | 8.0-12.0 | - | 0.10 |
| 316 | 0.08 | 2.00 | 1.00 | 0.045 | 0.030 | 16.0-18.0 | 10.0-14.0 | 2.0-3.0 | 0.10 |
| 316L | 0.03 | 2.00 | 1.00 | 0.045 | 0.030 | 16.0-18.0 | 10.0-14.0 | 2.0-3.0 | 0.10 |
The low carbon content in 304L and 316L enhances weldability, while molybdenum in 316 and 316L improves resistance to pitting and crevice corrosion, making Stainless Steel Pipe ideal for harsh environments.
| Grade | Tensile Strength (min, MPa) | Yield Strength (min, MPa) | Elongation (min, %) | Hardness (max, HB) | Hardness (max, HRB) |
|---|---|---|---|---|---|
| 304 | 515 | 205 | 40 | 201 | 92 |
| 304L | 485 | 170 | 40 | 201 | 92 |
| 316 | 515 | 205 | 40 | 217 | 95 |
| 316L | 485 | 170 | 40 | 217 | 95 |
These mechanical properties make Stainless Steel Pipe suitable for applications requiring high strength and corrosion resistance, such as architectural structures, marine environments, and chemical processing.
In order to solve the cumbersome and difficult to remember stainless steel grades, improve the practicability of the brand representation, and the contrast with the international standard grades, China has formulated the "Universal Code System for Steel and Alloy Grades", such as 06Cr19Ni10, corresponding to 304. Different grades of stainless steel have different ingredients, but they all have a national standard. The standards of each country are also different.
| No | China (GB) | Japan (JIS) | American | Korea (KS) | EU (BS EN) | India (IS) | Australia (AS) | Taiwan (CNS) | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Old | New (07.10) | SUS | ASTM | UNS | STS | EN | IS | AS | CNS | |
| Austenitic Stainless Steel | ||||||||||
| 1 | 1Cr17Mn6Ni5N | 12Cr17Mn6Ni5N | SUS201 | 201 | S20100 | STS201 | 1.4372 | 10Cr17Mn6Ni4N20 | 201-2 | 201 |
| 2 | 1Cr18Mn8Ni5N | 12Cr18Mn9Ni5N | SUS202 | 202 | S20200 | STS202 | 1.4373 | — | — | 202 |
| 3 | 1Cr17Ni7 | 12Cr17Ni7 | SUS301 | 301 | S30100 | STS301 | 1.4319 | 10Cr17Ni7 | 301 | 301 |
| 4 | 0Cr18Ni9 | 06Cr19Ni10 | SUS304 | 304 | S30400 | STS304 | 1.4301 | 07Cr18Ni9 | 304 | 304 |
| 5 | 00Cr19Ni10 | 022Cr19Ni10 | SUS304L | 304L | S30403 | STS304L | 1.4306 | 02Cr18Ni11 | 304L | 304L |
| 6 | 0Cr19Ni9N | 06Cr19Ni10N | SUS304N1 | 304N | S30451 | STS304N1 | 1.4315 | — | 304N1 | 304N1 |
| 7 | 0Cr19Ni10NbN | 06Cr19Ni9NbN | SUS304N2 | XM21 | S30452 | STS304N2 | — | — | 304N2 | 304N2 |
| 8 | 00Cr18Ni10N | 022Cr19Ni10N | SUS304LN | 304LN | S30453 | STS304LN | — | — | 304LN | 304LN |
| 9 | 1Cr18Ni12 | 10Cr18Ni12 | SUS305 | 305 | S30500 | STS305 | 1.4303 | — | 305 | 305 |
| 10 | 0Cr23Ni13 | 06Cr23Ni13 | SUS309S | 309S | S30908 | STS309S | 1.4833 | — | 309S | 309S |
| 11 | 0Cr25Ni20 | 06Cr25Ni20 | SUS310S | 310S | S31008 | STS310S | 1.4845 | — | 310S | 310S |
| 12 | 0Cr17Ni12Mo2 | 06Cr17Ni12Mo2 | SUS316 | 316 | S31600 | STS316 | 1.4401 | 04Cr17Ni12Mo2 | 316 | 316 |
| 13 | 0Cr18Ni12Mo3Ti | 06Cr17Ni12Mo2Ti | SUS316Ti | 316Ti | S31635 | — | 1.4571 | 04Cr17Ni12MoTi20 | 316Ti | 316Ti |
| 14 | 00Cr17Ni14Mo2 | 022Cr17Ni12Mo2 | SUS316L | 316L | S31603 | STS316L | 1.4404 | 02Cr17Ni12Mo2 | 316L | 316L |
| 15 | 0Cr17Ni12Mo2N | 06Cr17Ni12Mo2N | SUS316N | 316N | S31651 | STS316N | — | — | 316N | 316N |
| 16 | 00Cr17Ni13Mo2N | 022Cr17Ni13Mo2N | SUS316LN | 316LN | S31653 | STS316LN | 1.4429 | — | 316LN | 316LN |
| 17 | 0Cr18Ni12Mo2Cu2 | 06Cr18Ni12Mo2Cu2 | SUS316J1 | — | — | STS316J1 | — | — | 316J1 | 316J1 |
| 18 | 00Cr18Ni14Mo2Cu2 | 022Cr18Ni14Mo2Cu2 | SUS316J1L | — | — | STS316J1L | — | — | — | 316J1L |
| 19 | 0Cr19Ni13Mo3 | 06Cr19Ni13Mo3 | SUS317 | 317 | S31700 | STS317 | — | — | 317 | 317 |
| 20 | 00Cr19Ni13Mo3 | 022Cr19Ni13Mo3 | SUS317L | 317L | S31703 | STS317L | 1.4438 | — | 317L | 317L |
| 21 | 0Cr18Ni10Ti | 06Cr18Ni11Ti | SUS321 | 321 | S32100 | STS321 | 1.4541 | 04Cr18Ni10Ti20 | 321 | 321 |
| 22 | 0Cr18Ni11Nb | 06Cr18Ni11Nb | SUS347 | 347 | S34700 | STS347 | 1.4550 | 04Cr18Ni10Nb40 | 347 | 347 |
| Austenitic-Ferritic Stainless Steel (Duplex) | ||||||||||
| 23 | 0Cr26Ni5Mo2 | — | SUS329J1 | 329 | S32900 | STS329J1 | 1.4477 | — | 329J1 | 329J1 |
| 24 | 00Cr18Ni5Mo3Si2 | 022Cr19Ni5Mo3Si2N | SUS329J3L | — | S31803 | STS329J3L | 1.4462 | — | 329J3L | 329J3L |
| Ferritic Stainless Steel | ||||||||||
| 25 | 0Cr13Al | 06Cr13Al | SUS405 | 405 | S40500 | STS405 | 1.4002 | 04Cr13 | 405 | 405 |
| 26 | — | 022Cr11Ti | SUH409 | 409 | S40900 | STS409 | 1.4512 | — | 409L | 409L |
| 27 | 00Cr12 | 022Cr12 | SUS410L | — | — | STS410L | — | — | 410L | 410L |
| 28 | 1Cr17 | 10Cr17 | SUS430 | 430 | S43000 | STS430 | 1.4016 | 05Cr17 | 430 | 430 |
| 29 | 1Cr17Mo | 10Cr17Mo | SUS434 | 434 | S43400 | STS434 | 1.4113 | — | 434 | 434 |
| 30 | — | 022Cr18NbTi | — | — | S43940 | — | 1.4509 | — | 439 | 439 |
| 31 | 00Cr18Mo2 | 019Cr19Mo2NbTi | SUS444 | 444 | S44400 | STS444 | 1.4521 | — | 444 | 444 |
| Martensitic Stainless Steel | ||||||||||
| 32 | 1Cr12 | 12Cr12 | SUS403 | 403 | S40300 | STS403 | — | — | 403 | 403 |
| 33 | 1Cr13 | 12Cr13 | SUS410 | 410 | S41000 | STS410 | 1.4006 | 12Cr13 | 410 | 410 |
| 34 | 2Cr13 | 20Cr13 | SUS420J1 | 420 | S42000 | STS420J1 | 1.4021 | 20Cr13 | 420 | 420J1 |
| 35 | 3Cr13 | 30Cr13 | SUS420J2 | — | — | STS420J2 | 1.4028 | 30Cr13 | 420J2 | 420J2 |
| 36 | 7Cr17 | 68Cr17 | SUS440A | 440A | S44002 | STS440A | — | — | 440A | 440A |
Stainless steel tube is a cylindrical hollow struc...
Austenitic stainless steel is a type of stainless ...